Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions.
نویسندگان
چکیده
GABA transporter subtype 1 (GAT1) molecules were counted near GABAergic synapses, to a resolution of approximately 0.5 microm. Fusions between GAT1 and green fluorescent protein (GFP) were tested in heterologous expression systems, and a construct was selected that shows function, expression level, and trafficking similar to that of wild-type (WT) GAT1. A strain of knock-in mice was constructed that expresses this mGAT1-GFP fusion in place of the WT GAT1 gene. The pattern of fluorescence in brain slices agreed with previous immunocytochemical observations. [3H]GABA uptake, synaptic electrophysiology, and subcellular localization of the mGAT1-GFP construct were also compared with WT mice. Quantitative fluorescence microscopy was used to measure the density of mGAT1-GFP at presynaptic structures in CNS preparations from the knock-in mice. Fluorescence measurements were calibrated with transparent beads and gels that have known GFP densities. Surface biotinylation defined the fraction of transporters on the surface versus those in the nearby cytoplasm. The data show that the presynaptic boutons of GABAergic interneurons in cerebellum and hippocampus have a membrane density of 800-1300 GAT1 molecules per square micrometer, and the axons that connect boutons have a linear density of 640 GAT1 molecules per micrometer. A cerebellar basket cell bouton, a pinceau surrounding a Purkinje cell axon, and a cortical chandelier cell cartridge carry 9000, 7.8 million, and 430,000 GAT1 molecules, respectively; 61-63% of these molecules are on the surface membrane. In cultures from hippocampus, the set of fluorescent cells equals the set of GABAergic interneurons. Knock-in mice carrying GFP fusions of membrane proteins provide quantitative data required for understanding the details of synaptic transmission in living neurons.
منابع مشابه
The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons.
At inhibitory synapses, glycine and GABA are accumulated into synaptic vesicles by the same vesicular transporter VGAT/VIAAT (vesicular GABA transporter/vesicular inhibitory amino acid transporter), enabling a continuum of glycine, GABA, and mixed phenotypes. Many fundamental aspects of the presynaptic contribution to the inhibitory phenotypes remain unclear. The neuronal transporter GlyT2 is o...
متن کاملSelective distribution of GABA(A) receptor subtypes in mouse spinal dorsal horn neurons and primary afferents.
In the spinal cord dorsal horn, presynaptic GABA(A) receptors (GABA(A)Rs) in the terminals of nociceptors as well as postsynaptic receptors in spinal neurons regulate the transmission of nociceptive and somatosensory signals from the periphery. GABA(A)Rs are heterogeneous and distinguished functionally and pharmacologically by the type of α subunit variant they contain. This heterogeneity raise...
متن کاملA Role for GAT-1 in Presynaptic GABA Homeostasis?
In monoamine-releasing terminals, neurotransmitter transporters - in addition to terminating synaptic transmission by clearing released transmitters from the extracellular space - are the primary mechanism for replenishing transmitter stores and thus regulate presynaptic homeostasis. Here, we analyze whether GAT-1, the main plasma membrane GABA transporter, plays a similar role in GABAergic ter...
متن کاملEffect of paraoxon on the synaptosomal GABA uptake in rat hippocampus and cerebral cortex
Introduction: Paraoxon (the neurotoxic metabolite of organophosphorus (OP) insecticide, parathion) exerts acute toxicity by inhibition of acetylcholinesterase (AChE), leading to the accumulation of acetylcholine in cholinergic synapses and hence overstimulation of the cholinergic system. Since, reports on changes in the level of γ- amino butyric acid (GABA) during OP-induced convulsion have bee...
متن کاملHeterogeneous distribution and utilization of inhibitory neurotransmitter transporters
Neurotransmitter homeostasis is important for proper synaptic signal transmission. Synaptically released neurotransmitters are recycled by direct reuptake into the presynaptic terminal and/or uptake into perisynaptic astrocyte processes. In the latter case, most neurotransmitters are metabolized and shuttled back to the presynaptic terminal to restore the neurotransmitter content in that compar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2002